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A Fe"zZn™ complex, [FeZn(L)(AcO);]BPhy-H,0, of 2-{N-
[2-(dimethylamino)ethylJiminomethyl}-6-[N, N-di(2-pyridyl-
methyl)aminomethyl]-4-methylphenolate (L ™) hydrolyses tri( p-
nitrophenyl) phosphate (TNP) into di( p-nitrophenyl) phosphate
(DNP7) and DNP~ into mono( p-nitrophenyl) phosphate
(MNP>7) in aqueous DMF.

Bimetallic cores exist at the active sites of many metallo-
enzymes and play an essential role in biological systems.!
Dinuclear Zn cores are found at the active sites of phospho-
esterases. ™ It is known that phosphotriesterase has only two Zn
ions at the active site’ whereas phospholipase C® and P1
nuclease’ have an additional Zn ion to hydrolyze phosphodiester.
It is supposed that these phosphodiesterases require a trinuclear
Zn core to bind a substrate at the dinuclear Zn unit and to provide
the nucleophile (OH™ or water) on the third Zn center (Figure 1,
A). Moreover, heterodinuclear FeZn core was recognized at the
active sites of purple acid phosphatase® and human calcineurin’
that facilitate the hydrolysis of phosphodiesters into phospho-
monoesters. It is considered that these enzymes employ a FeZn
core instead of trinuclear Zn core to accommodate a substrate in
chelating mode on the Fe center and provide the nucleophile on
the Zn center'® (Figure 1, B). Here we report a FeZn complex that
has a hydrolytic function relevant to phosphodiesterase.
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Figure 1. Supposed interation of phosphodiester
with (A) triuclear Zn core and (B) dinuclear FeZn
core in biological phosphodiester.

The FeZn complex [FeZn(L)(AcO);]BPhy-H,O of the end-
off compartmental ligand HL (Fig. 2) was prepared as reddish
brown crystals by the reaction of HL with Fe(AcO); and
Zn(AcO),;-2H,0 in methanol in the presence of sodium tetra-
phenylborate.'!

The crystal structure of the FeZn complex was determined by
single-crystal X-ray analysis.'> An ORTEP view of the complex
is shown in Fig. 2.'3 The two metal ions are bridged by the
phenolic oxygen atom of L™ and two acetate groups in a ‘syn-syn’
mode in the Fe—Zn separation of 3.385(1) A. The Fe is bound to
the bidentate arm and has a six-coordinate geometry together with

two oxygen atoms (O2 and O4) from the bridging acetate groups
and the oxygen atom (O6) from a unidentate acetate group. The
Zn is bound to the tridentate arm and has a six-coordinate
geometry together with two oxygen atoms (O3 and OS5) from the
bridging acetate groups. The average of the Fe-to-donor bond
distances is 2.038 A and the average of the Zn-to-donor distances
is 2.123 A. The site specificity of metal ions in the FeZn complex
is in accord with our recent finding that a smaller metal ion is
bound to the bidentate arm and a larger metal ion to the tridentate
arm. !4
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Figure 2. Crystal structure of [FeZn(L)(AcO)3;]BPhy-H,O.

The complex shows two absorption bands at 340nm (&:
5500M~'cm™") and 480 nm (&: 1000M~'cm™') in DMF. The
spectrum is virtually invariant at a moderate complex concent-
ration (1.0 x 1073-2.0 x 10~* M). FAB mass spectrometry in -
nitrobenzylalcohol matrix indicated the parent ion peaks centered
around m/z 654.2 corresponding to {FeZn(L)(AcO),}™.

Hydrolytic activity of the FeZn complex toward tri( p-nitro-
phenyl) phosphate (TNP) and hydrogen di( p-nitrophenyl) phos-
phate (HDNP) was examined in aqueous DMF (H,O : DMF =
2 : 98 in volume) at 25 °C by means of UV-visible spectroscopy.
An aqueous DMF solution containing the FeZn complex
(2.0 x 107*M) and the substrate (TNP or HDNP; 6.7x
107> M) was prepared and subjected to spectroscopic measure-
ments, using a complex solution in aqueous DMF (2.0 x 10~* M)
as reference.

Spectral changes in the hydrolysis of TNP by the FeZn
complex are shown in Figure 3. The absorption band of TNP at
280nm decreased with time with a concomitant increase at
304 nm due to the formation of DNP~. Another absorption band
observed at 422nm is characteristic of p-nitrophenolate ion.
Based on the absorbance at 304 nm, the hydrolysis of TNP into
DNP~ must be completed in 100 min, but the absorbance at
304 nm, and that at 422 nm as well, showed a tendency to increase
further. This fact suggests that the hydrolysis of BNP~ into
MNP>~ occurs after the completion of the hydrolysis of TNP into

Copyright © 2002 The Chemical Society of Japan



Chemistry Letters 2002

BNP~. Itis worth noting that the FeCu complex has a high activity
in the hydrolysis of TNP relative to analogous ZnZn complex
[Zn,(L)(AcO),]Cl04 when compared under the same conditions
(see Insert).
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Figure 3. Spectral changes in the hydrolysis of TNP by the
FeZn complex (measured every 10 minutes). The insert is the
spectral changes in the hdrolysis of TNP by [Zn;,(L)(AcO),]-
ClO4 (measured every 10 minutes).

The hydrolysis of HDNP by the FeZn complex was studied by
a separate run (Figure 4). In this case spectral changes in the near
UV region are small because the absorption band of HDNP and
that of MNP?~ are located at close wavelength (304 and 308 nm,
respectively). However, the hydrolysis of HDNP by the FeZn
complex is evident from the absorption band of p-nitrophenolate
ion appearing at 425 nm. The solution soon after dissolution gave
spectrum a which changed to spectrum b after 100 min and then
gradually to ¢ after 700 min. The spectral feature of b showing
‘negative absorption’ around 370 nm implies that a FeZn-DNP
adduct is formed at the initial stage and the bound DNP~ is slowly
hydrolyzed into MNP?~. The hydrolysis of DNP~ into BNP?~ is
almost completed in 700 min judged from the time-course of the
absorbance at 425 nm.
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Figure 4. Spectral changes in the hydrolysis of DNP~ by the
FeZn complex (measured every 100 minutes).

It must be emphasized that analogous ZnZn complex has no
activity to hydrolyze DNP~.'> We have confirmed that the
absorption bands at 340 and 480 nm of the FeZn complex in aq.
DMF (H,O : DMF = 2 : 98) diminish their intensities upon high
dilution (<2 x 10~*M). Furthermore, the molar conductance of
the complex in aq. DMF increased upon dilution from
50Scm’mol ™! at 2 x 107*M to 90 Scm’mol ! at 4 x 1075 M.
These facts imply that one acetate bridge of [FeZn(L)(AcO),]**
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is released more or less in a dilute solution, providing two vacant
sites on the Fe center and one vacant site on the Zn center. The
resulting [FeZn(L)(AcO)]** can accommodate DNP~ in the
chelating mode on the Fe center and OH™ (or H,O) on the Zn
center (Fig. 1, B), allowing the nucleophilic attack of the OH™ (or
H,O0) to the phosphorus nucleus of DNP~.
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